Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1,1'-Dibutyl-3,3'-biindolinylidene-2,2'-dione

Mao-Sen Yuan^a* and Qi Fang^b

^aCollege of Science, Northwest Sci-Tech University of Agriculture and Forestry, Yangling 712100, Shanxi Province, People's Republic of China, and ^bState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China Correspondence e-mail: yuanms@nwsuaf.edu.cn

Received 23 November 2010; accepted 3 December 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.121; data-to-parameter ratio = 11.4.

In the title molecule, $C_{24}H_{26}N_2O_2$, the two indol-2-one units, which are connected by a C=C double bond, are almost coplanar with an interplanar angle of 6.8 $(1)^{\circ}$. On cooling from 293 to 120 K, the space group changes from $P2_1/n$ to $P2_1$. Two intramolecular C-H···O hydrogen bonds occur.

Related literature

For uses of isoindigo derivatives as medicines, see: Sassatelli et al. (2004). For the room temperature (293 K) structure, see: Yuan et al. (2007).

Experimental

Crystal data $C_{24}H_{26}N_2O_2$

 $M_r = 374.47$

Monoclinic, P2 ₁	Z = 2
a = 8.9224 (3) Å	Mo $K\alpha$ radiation
b = 11.9605 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 9.6827 (4) Å	$T = 120 { m K}$
$\beta = 110.782 \ (1)^{\circ}$	$0.20 \times 0.11 \times 0.09 \text{ mm}$
$V = 966.07 (7) \text{ Å}^3$	

Data collection

Bruker SMART 6K CCD area-	13014 measured reflections
detector diffractometer	2926 independent reflections
Absorption correction: multi-scan	2477 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2006)	$R_{\rm int} = 0.041$
$T_{\min} = 0.984, \ T_{\max} = 0.993$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	1 restraint
$wR(F^2) = 0.121$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
2926 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$
257 parameters	

 $> 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
C4—H4···O2	0.95	2.05	2.815 (3)	137
C24—H24···O1	0.95	2.04	2.805 (3)	136

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work is supported by the National Natural Science Foundation of China (grant Nos. 50673054 and 20972089).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2237).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sassatelli, M., Saab, E., Anizon, F., Prudhomme, M. & Moreau, P. (2004). Tetrahedron Lett. 45, 4827-4830.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yuan, M.-S., Fang, Q., Ji, L. & Yu, W.-T. (2007). Acta Cryst. E63, 04342.

Acta Cryst. (2011). E67, o52 [doi:10.1107/S160053681005066X]

(*E*)-1,1'-Dibutyl-3,3'-biindolinylidene-2,2'-dione

M.-S. Yuan and Q. Fang

Comment

Isoindigo can be obtained from various natural sources. Its derivatives are usually known as useful medicine (Sassatelli *et al.*, 2004). Recently we have synthesized the title isoindigo derivative and determined its structure at room temperature (293 K) (Yuan *et al.*, 2007). To reduce the disorder of the two butyl groups of the molecule at room temperature, we redetermined the structure at low temperature (120 K). Unexpectedly, we found some changes of the crystal at different temperatures. Here we mainly report the correlation between structures at high and low temperatures.

The band features of the molecule at 120 K are very similar to those at 293 k. For example, the C3—C2=C22—C23 fragment is quite conjugated and exhibits an E configuration, in which the bond lengths are 1.479 (3), 1.373 (3), and 1.477 (3) for C3—C2, C2=C22, and C22—C23, respectively. There are a pair of intramolecular hydrogen bonds C4—H4…O2 and C24—H24…O1 (see Fig. 1).

The cell parameters of the compound at 293 K and 120 K are very close. The cell volumn 1005.32 (4) $Å^3$ at 293 K slightly shrinks to 966.07 (7) $Å^3$ at 120 K. The temperature effect on the molecule is significant that the severely disordered terminal C atoms of the two butyl groups at 293 K become completely ordered at 120 k and all the atomic displacement parameters are greatly reduced.

At 293 K, the molecule is centrosymmetric and has a perfect planarity. At 120 K, however, the centrosymmetry is borken and a dihedral angle of 6.8 (1) ° between the two nine-membered indole planes are developed. Consequently, molecular chirality is produced, which brings the chirality to the crystal. Meanwhile, the space group of the crystal changed from $P2_1/n$ to $P2_1$.

Experimental

1-Butyl-1*H*-indole-2,3-dione (1.5 g) and 1-butyl-1*H* -indole-2-one (1.5 g) were mixed with polyphosphoric acid (15 g), reacted at 333–338 K for 30 min. under N₂, and then to 433–442 K with stirring. After 3 h, the mixture was poured into ice water and stirred for 1 h. The solution was extracted in chloroform and dried over Na₂SO₄. After removing the solvent, the crude product was purified by column chromatography on silica gel, eluting with petrol ether, affording the title compound (1.4 g, 47.1%). The compound was dissolved in THF and purple plate title crystals formed on slow evaporation at room temperature.

Refinement

All H atoms were positioned geometrically and allowed to ride on their attached atom. The C—H bond lengths for aromatic, methyl and methene groups were set to 0.95, 0.98 and 0.99 Å, respectively.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. An *a* axis view of the molecular packing of (I) at 120 K.

(E)-1,1'-Dibutyl-3,3'-biindolinylidene-2,2'-dione

Crystal data	
$C_{24}H_{26}N_2O_2$	F(000) = 400
$M_r = 374.47$	$D_{\rm x} = 1.287 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 3669 reflections
<i>a</i> = 8.9224 (3) Å	$\theta = 2.7 - 30.0^{\circ}$
b = 11.9605 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 9.6827 (4) Å	T = 120 K
$\beta = 110.782 \ (1)^{\circ}$	Plank, purple
$V = 966.07 (7) \text{ Å}^3$	$0.20\times0.11\times0.09~mm$
Z = 2	

Data collection

Bruker SMART 6K CCD area-detector diffractometer	2926 independent reflections
Radiation source: fine-focus sealed tube	2477 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.041$
Detector resolution: ω pixels mm ⁻¹	$\theta_{\text{max}} = 30.0^\circ, \theta_{\text{min}} = 2.3^\circ$
φ and ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2006)	$k = -16 \rightarrow 16$
$T_{\min} = 0.984, \ T_{\max} = 0.993$	$l = -13 \rightarrow 13$
13014 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.121$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0708P)^{2} + 0.1553P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2926 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
257 parameters	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.22 \ e \ {\rm \AA}^{-3}$

Special details

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 3 runs of narrow-frame ω -scans (scan width 0.3° ω , 20 s exposure), every run at a different ϕ angle. Crystal to detector distance 4.83 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Methyl groups were refined as rigid bodies rotating around C—C bonds, with a common refined U for three H atoms. Other H atoms: riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.5183 (2)	0.40482 (16)	0.3409 (2)	0.0316 (4)
O2	0.9572 (2)	0.57182 (16)	0.1333 (2)	0.0298 (4)
N1	0.7459 (2)	0.30308 (16)	0.4455 (2)	0.0223 (4)
N2	0.7454 (2)	0.69090 (16)	0.0617 (2)	0.0212 (4)
C1	0.6589 (3)	0.3867 (2)	0.3584 (2)	0.0219 (4)
C2	0.7669 (2)	0.44723 (18)	0.2919 (2)	0.0192 (4)
C3	0.9220 (2)	0.38775 (19)	0.3518 (2)	0.0195 (4)
C4	1.0726 (3)	0.3982 (2)	0.3403 (3)	0.0227 (4)
H4	1.0912	0.4548	0.2795	0.027*
C5	1.1959 (3)	0.3257 (2)	0.4182 (3)	0.0266 (5)
Н5	1.2985	0.3338	0.4103	0.032*
C6	1.1715 (3)	0.2420 (2)	0.5069 (3)	0.0265 (5)
H6A	1.2570	0.1932	0.5587	0.032*
C7	1.0227 (3)	0.2291 (2)	0.5203 (3)	0.0257 (5)
H7	1.0049	0.1719	0.5809	0.031*

C8	0.9016 (3)	0.30130 (19)	0.4437 (2)	0.0210 (4)
C9	0.6854 (3)	0.2281 (2)	0.5331 (2)	0.0259 (5)
H9A	0.5909	0.2631	0.5466	0.031*
H9B	0.7690	0.2188	0.6321	0.031*
C10	0.6377 (3)	0.1131 (2)	0.4634 (3)	0.0289 (5)
H10A	0.7291	0.0810	0.4414	0.035*
H10B	0.6157	0.0633	0.5356	0.035*
C11	0.4915 (3)	0.1152 (2)	0.3223 (3)	0.0330 (5)
H11A	0.4000	0.1472	0.3440	0.040*
H11B	0.5135	0.1646	0.2496	0.040*
C12	0.4457 (4)	0.0003 (2)	0.2548 (3)	0.0424 (7)
H12A	0.3545	0.0068	0.1617	0.049 (6)*
H12B	0.4161	-0.0474	0.3233	0.049 (6)*
H12C	0.5370	-0.0328	0.2358	0.049 (6)*
C21	0.8248 (2)	0.59781 (19)	0.1318 (2)	0.0205 (4)
C22	0.7168 (2)	0.53754 (18)	0.1994 (2)	0.0193 (4)
C23	0.5658 (2)	0.60189 (19)	0.1468 (2)	0.0186 (4)
C24	0.4134 (2)	0.5911 (2)	0.1555 (2)	0.0230 (4)
H24	0.3907	0.5296	0.2070	0.028*
C25	0.2947 (3)	0.6699 (2)	0.0894 (3)	0.0243 (5)
H25	0.1908	0.6605	0.0940	0.029*
C26	0.3261 (3)	0.7618 (2)	0.0169 (2)	0.0253 (5)
H26	0.2445	0.8158	-0.0254	0.030*
C27	0.4764 (3)	0.7760 (2)	0.0054 (3)	0.0245 (5)
H27	0.4993	0.8391	-0.0432	0.029*
C28	0.5909 (2)	0.69476 (18)	0.0674 (2)	0.0199 (4)
C29	0.8118 (3)	0.7658 (2)	-0.0215 (2)	0.0240 (4)
H29A	0.7229	0.8062	-0.0964	0.029*
H29B	0.8676	0.7207	-0.0742	0.029*
C30	0.9289 (3)	0.8506 (2)	0.0767 (3)	0.0287 (5)
H30A	1.0197	0.8098	0.1487	0.034*
H30B	0.9724	0.8966	0.0146	0.034*
C31	0.8570 (3)	0.9279 (2)	0.1606 (3)	0.0321 (5)
H31A	0.8193	0.8831	0.2279	0.039*
H31B	0.7631	0.9667	0.0898	0.039*
C32	0.9782 (4)	1.0145 (3)	0.2504 (3)	0.0479 (8)
H32A	1.0220	1.0551	0.1853	0.054 (6)*
H32B	0.9249	1.0674	0.2953	0.054 (6)*
H32C	1.0654	0.9769	0.3283	0.054 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0265 (8)	0.0276 (9)	0.0468 (11)	0.0064 (7)	0.0204 (8)	0.0120 (8)
O2	0.0262 (8)	0.0267 (9)	0.0415 (9)	0.0058 (7)	0.0183 (7)	0.0102 (7)
N1	0.0218 (8)	0.0200 (9)	0.0262 (9)	-0.0022 (7)	0.0100 (7)	0.0037 (7)
N2	0.0202 (8)	0.0200 (9)	0.0245 (9)	0.0009 (7)	0.0093 (7)	0.0034 (7)
C1	0.0236 (10)	0.0197 (10)	0.0245 (10)	-0.0014 (9)	0.0112 (8)	-0.0011 (8)

C2	0.0201 (9)	0.0160 (9)	0.0226 (10)	-0.0010 (8)	0.0091 (7)	-0.0018 (7)
C3	0.0207 (9)	0.0173 (10)	0.0195 (9)	-0.0012 (8)	0.0060 (7)	-0.0011 (8)
C4	0.0226 (9)	0.0181 (10)	0.0269 (10)	0.0000 (9)	0.0083 (8)	0.0018 (8)
C5	0.0216 (10)	0.0267 (12)	0.0308 (12)	-0.0002 (9)	0.0084 (9)	0.0022 (10)
C6	0.0222 (10)	0.0251 (11)	0.0284 (11)	0.0016 (9)	0.0042 (8)	0.0046 (9)
C7	0.0252 (11)	0.0226 (11)	0.0263 (11)	-0.0017 (9)	0.0054 (9)	0.0036 (9)
C8	0.0212 (9)	0.0190 (10)	0.0223 (10)	-0.0014 (8)	0.0071 (7)	-0.0003 (8)
C9	0.0282 (11)	0.0263 (11)	0.0243 (10)	-0.0022 (10)	0.0107 (9)	0.0059 (9)
C10	0.0314 (11)	0.0224 (11)	0.0345 (12)	0.0002 (10)	0.0138 (9)	0.0070 (9)
C11	0.0379 (13)	0.0232 (11)	0.0337 (12)	-0.0016 (10)	0.0077 (10)	0.0016 (10)
C12	0.0505 (17)	0.0257 (13)	0.0462 (16)	-0.0037 (12)	0.0113 (13)	-0.0035 (11)
C21	0.0221 (9)	0.0174 (10)	0.0228 (10)	-0.0009 (8)	0.0091 (8)	0.0011 (8)
C22	0.0207 (9)	0.0164 (9)	0.0215 (10)	-0.0019 (8)	0.0083 (7)	-0.0020(7)
C23	0.0180 (8)	0.0163 (9)	0.0200 (9)	0.0012 (8)	0.0051 (7)	-0.0016 (7)
C24	0.0214 (10)	0.0237 (11)	0.0251 (10)	-0.0021 (9)	0.0097 (8)	0.0000 (8)
C25	0.0208 (10)	0.0249 (12)	0.0276 (11)	-0.0008 (9)	0.0091 (8)	-0.0003 (9)
C26	0.0232 (10)	0.0257 (11)	0.0261 (10)	0.0054 (9)	0.0076 (8)	0.0030 (9)
C27	0.0232 (10)	0.0225 (11)	0.0274 (10)	0.0025 (9)	0.0083 (8)	0.0047 (9)
C28	0.0198 (9)	0.0191 (10)	0.0205 (9)	-0.0008 (8)	0.0067 (7)	-0.0017 (8)
C29	0.0255 (10)	0.0215 (10)	0.0269 (11)	-0.0010 (9)	0.0117 (9)	0.0048 (9)
C30	0.0281 (11)	0.0249 (11)	0.0347 (12)	-0.0038 (9)	0.0129 (9)	0.0052 (9)
C31	0.0365 (12)	0.0227 (11)	0.0361 (13)	-0.0028 (10)	0.0114 (10)	0.0009 (9)
C32	0.064 (2)	0.0330 (15)	0.0429 (16)	-0.0158 (15)	0.0146 (14)	-0.0077 (12)

Geometric parameters (Å, °)

O1—C1	1.224 (3)	C11—H11B	0.9900
O2—C21	1.217 (3)	C12—H12A	0.9801
N1—C1	1.360 (3)	C12—H12B	0.9801
N1—C8	1.396 (3)	C12—H12C	0.9801
N1—C9	1.463 (3)	C21—C22	1.524 (3)
N2—C21	1.364 (3)	C22—C23	1.477 (3)
N2—C28	1.399 (3)	C23—C24	1.398 (3)
N2—C29	1.464 (3)	C23—C28	1.413 (3)
C1—C2	1.519 (3)	C24—C25	1.392 (3)
C2—C22	1.373 (3)	C24—H24	0.9500
C2—C3	1.479 (3)	C25—C26	1.386 (3)
C3—C4	1.393 (3)	С25—Н25	0.9500
C3—C8	1.417 (3)	C26—C27	1.394 (3)
C4—C5	1.394 (3)	С26—Н26	0.9500
C4—H4	0.9500	C27—C28	1.383 (3)
C5—C6	1.386 (3)	С27—Н27	0.9500
С5—Н5	0.9500	C29—C30	1.523 (3)
C6—C7	1.388 (3)	С29—Н29А	0.9900
С6—Н6А	0.9500	С29—Н29В	0.9900
C7—C8	1.376 (3)	C30—C31	1.514 (4)
С7—Н7	0.9500	С30—Н30А	0.9900
C9—C10	1.525 (3)	С30—Н30В	0.9900
С9—Н9А	0.9900	C31—C32	1.528 (4)

00 02 02 02 02
)2)2)2
)2)2 I
)2
1
1
5
5
)(2)
3 (2)
56 (17)
94 (19)
39 (18)
12 (18)
3 (2)
)(2)
22 (18)
5 (2)
,
7
3 (2)
5
<u>,</u>
7 (2)
7
7
5(2)
2
2
3 (2)
57 (19)
0 (18)
71 (18)
)
)
)
)
3
5(2)
5
5
5
-
)
5
5 5 ' (2)
5 7 (2) 3
5 7 (2) 3
(5) S L S D 2 5 7 7 3 5 5 7 7 5 2 3 5 L 7 D D C M B H H H

C12—C11—H11A	109.0	C32—C31—H31B	109.3
C10-C11-H11A	109.0	H31A—C31—H31B	107.9
C12—C11—H11B	109.0	C31—C32—H32A	109.5
C10-C11-H11B	109.0	C31—C32—H32B	109.5
H11A—C11—H11B	107.8	H32A—C32—H32B	109.5
C11—C12—H12A	109.5	C31—C32—H32C	109.5
C11—C12—H12B	109.5	H32A—C32—H32C	109.5
H12A—C12—H12B	109.5	H32B—C32—H32C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
С4—Н4…О2	0.95	2.05	2.815 (3)	137	
C24—H24…O1	0.95	2.04	2.805 (3)	136	

Fig. 1

Fig. 2